
SMT-based Model Checking

Cesare Tinelli

The University of Iowa

4th NASA Formal Methods Symposium, April 2012 – p.1/54

Modeling Computational Systems

Software or hardware systems can be often represented as a
state transition system M = (S, I, T ,L) where

• S is a set of states, the state space

• I ⊆ S is a set of initial states

• T ⊆ S × S is a (right-total) transition relation

• L : S → 2P is a labeling function where P is a set of state
predicates

Typically, the state predicates denote variable-value pairs x = v

4th NASA Formal Methods Symposium, April 2012 – p.2/54

Model Checking

Software or hardware systems can be often represented as a
state transition system M = (S, I, T ,L)

M can be seen as a model both

1. in an engineering sense:

an abstraction of the real system

and

2. in a mathematical logic sense:

a Kripke structure in some modal logic

4th NASA Formal Methods Symposium, April 2012 – p.3/54

Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

4th NASA Formal Methods Symposium, April 2012 – p.4/54

Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

Two main classes of properties:

• Safety properties: nothing bad ever happens

• Liveness properties: something good eventually happens

4th NASA Formal Methods Symposium, April 2012 – p.4/54

Safety Model Checking

The functional properties of a computational system can be
expressed as temporal properties

• for a suitable model M = (S, I, T ,L) of the system

• in a suitable temporal logic

Two main classes of properties:

• Safety properties: nothing bad ever happens

• Liveness properties: something good eventually happens

I will focus on checking safety in this talk

4th NASA Formal Methods Symposium, April 2012 – p.4/54

Talk Roadmap

• Checking safety properties

• Logic-based model checking

• Satisfiability Modulo Theories
• theories
• solvers

• SMT-based model checking
• main approaches
• k-induction

• basic method
• enhancements

• interpolation

4th NASA Formal Methods Symposium, April 2012 – p.5/54

Basic Terminology

Let M = (S, I, T ,L) be a transition system

The set RI of reachable states (of M) is the smallest subset of
S such that

1. I ⊆ RI (initial states are reachable)

2. RI ⊲⊳ T ⊆ RI (T -successors of reachable states are reachable)

Let E ⊆ S (a state property)

The set BE of bad states wrt E is the smallest subset of S such
that

1. E ⊆ BE (the states of E are bad)

2. T ⊲⊳ BE ⊆ BE (T -predecessors of bad states are bad)

4th NASA Formal Methods Symposium, April 2012 – p.6/54

Safety and Invariance

M is safe wrt a state property E if RI ∩ E = ∅

iff I ∩ BE = ∅

A state property P is invariant (for M) iff RI ⊆ P

Note:
M is safe wrt E iff S \ E is invariant for M

4th NASA Formal Methods Symposium, April 2012 – p.7/54

Checking Safety

In principle, to check that M is safe wrt E it suffices to

1. compute RI and

2. check that RI ∩ E = ∅
(Forward rechability)

4th NASA Formal Methods Symposium, April 2012 – p.8/54

Checking Safety

In principle, to check that M is safe wrt E it suffices to

1. compute RI and

2. check that RI ∩ E = ∅

or

1. compute BE and

2. check that I ∩ BE = ∅

(Forward rechability)

(Backward rechability)

4th NASA Formal Methods Symposium, April 2012 – p.8/54

Checking Safety

In principle, to check that M is safe wrt E it suffices to

1. compute RI and

2. check that RI ∩ E = ∅

or

1. compute BE and

2. check that I ∩ BE = ∅

(Forward rechability)

(Backward rechability)

This can be done explicitly only if S is finite, and relatively
small (< 10M states)

4th NASA Formal Methods Symposium, April 2012 – p.8/54

Checking Safety

In principle, to check that M is safe wrt E it suffices to

1. compute RI and

2. check that RI ∩ E = ∅

or

1. compute BE and

2. check that I ∩ BE = ∅

(Forward rechability)

(Backward rechability)

Alternatively, we can represent M symbolically and use

• BDD-based methods, if S is finite,

• automata-based methods,

• logic-based methods, or

• abstract interpretation methods

4th NASA Formal Methods Symposium, April 2012 – p.8/54

Checking Safety

In principle, to check that M is safe wrt E it suffices to

1. compute RI and

2. check that RI ∩ E = ∅

or

1. compute BE and

2. check that I ∩ BE = ∅

(Forward rechability)

(Backward rechability)

Alternatively, we can represent M symbolically and use

• BDD-based methods, if S is finite,

• automata-based methods,

• logic-based methods, or

• abstract interpretation methods

4th NASA Formal Methods Symposium, April 2012 – p.8/54

Logic-based Symbolic Model Checking

Applicable if we can encode M = (S, I, T , L) in some
(classical) logic L with decidable entailment |=L

(ϕ |=L ψ iff ϕ ∧ ¬ψ is unsatisfiable in L)

4th NASA Formal Methods Symposium, April 2012 – p.9/54

Logic-based Symbolic Model Checking

Applicable if we can encode M = (S, I, T , L) in some
(classical) logic L with decidable entailment |=L

(ϕ |=L ψ iff ϕ ∧ ¬ψ is unsatisfiable in L)

Examples of L:

• Propositional logic

• Quantified Boolean Formulas

• Bernay-Schönfinkel logic

• Quantifier-free real (or linear integer) arithmetic with
arrays and uninterpreted functions

• . . .

4th NASA Formal Methods Symposium, April 2012 – p.9/54

Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V : set of values in L

Not.: if x = (x1, . . . , xn) and σ = (v1, . . . , vn), φ[σ] := φ[v1/x1, . . . , vn/xn]

4th NASA Formal Methods Symposium, April 2012 – p.10/54

Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V : set of values in L

Not.: if x = (x1, . . . , xn) and σ = (v1, . . . , vn), φ[σ] := φ[v1/x1, . . . , vn/xn]

• states σ ∈ S identified with L(σ) and encoded as n-tuples
of V n

4th NASA Formal Methods Symposium, April 2012 – p.10/54

Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V : set of values in L

Not.: if x = (x1, . . . , xn) and σ = (v1, . . . , vn), φ[σ] := φ[v1/x1, . . . , vn/xn]

• states σ ∈ S identified with L(σ) and encoded as n-tuples
of V n

• I encoded as a formula I[x] with free variables x such that

σ ∈ I iff |=L I[σ]

4th NASA Formal Methods Symposium, April 2012 – p.10/54

Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V : set of values in L

Not.: if x = (x1, . . . , xn) and σ = (v1, . . . , vn), φ[σ] := φ[v1/x1, . . . , vn/xn]

• states σ ∈ S identified with L(σ) and encoded as n-tuples
of V n

• I encoded as a formula I[x] with free variables x such that

σ ∈ I iff |=L I[σ]

• T encoded as a formula T [x,x′] such that

|=L T [σ, σ′] for all (σ, σ′) ∈ T

4th NASA Formal Methods Symposium, April 2012 – p.10/54

Logical encodings of transitions systems

M = (S, I, T , L) X: set of variables V : set of values in L

Not.: if x = (x1, . . . , xn) and σ = (v1, . . . , vn), φ[σ] := φ[v1/x1, . . . , vn/xn]

• states σ ∈ S identified with L(σ) and encoded as n-tuples
of V n

• I encoded as a formula I[x] with free variables x such that

σ ∈ I iff |=L I[σ]

• T encoded as a formula T [x,x′] such that

|=L T [σ, σ′] for all (σ, σ′) ∈ T

• State properties encoded as formulas P [x]

4th NASA Formal Methods Symposium, April 2012 – p.10/54

Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] such that |=L R[σ] iff σ ∈ R

4th NASA Formal Methods Symposium, April 2012 – p.11/54

Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] such that |=L R[σ] iff σ ∈ R

Suppose we can compute R from I and T

Then, checking that M is safe wrt a property P [x] reduces to
checking that R[x] |=L ¬P [x]

4th NASA Formal Methods Symposium, April 2012 – p.11/54

Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] such that |=L R[σ] iff σ ∈ R

Suppose we can compute R from I and T

Then, checking that M is safe wrt a property P [x] reduces to
checking that R[x] |=L ¬P [x]

Problem: R may be very expensive or impossible to compute,
or not even representable in L

4th NASA Formal Methods Symposium, April 2012 – p.11/54

Strongest Inductive Invariant

The strongest inductive invariant (for M in L) is a formula
R[x] such that |=L R[σ] iff σ ∈ R

Suppose we can compute R from I and T

Then, checking that M is safe wrt a property P [x] reduces to
checking that R[x] |=L ¬P [x]

Problem: R may be very expensive or impossible to compute,
or not even representable in L

Logic-based model checking is about approximating R

as efficiently as possible and as precisely as needed

4th NASA Formal Methods Symposium, April 2012 – p.11/54

Main Logic-based Approaches

• Bounded model checking [CBRZ01, AMP06, BHvMW09]

• Interpolation-based model checking [McM03, McM05a]

• Property Directed Reachability [BM07, Bra10, EMB11]

• Temporal induction [SSS00, dMRS03, HT08]

• Backward reachability [ACJT96, GR10]

• . . .

Past accomplishments: mostly based on propositional logic,
with SAT solvers as reasoning engines

New frontier: based on logics decided by solvers for
Satisfiability Modulo Theories [Seb07, BSST09]

4th NASA Formal Methods Symposium, April 2012 – p.12/54

Model Checking Modulo Theories

We invariably reason about transition systems in the context of
some theory T of their data types

Examples

• Pipelined microprocessors: theory of equality, atoms like
f(g(a, b), c) = g(c, a)

• Timed automata: theory of integers/reals, atoms like
x− y < 2

• General software: combination of theories, atoms like
a[2 ∗ j + 1] + x ≥ car(l)− f(x)

Such reasoning can be reduced to checking the satisfiability of
certain formulas in (or modulo) the theory T .

4th NASA Formal Methods Symposium, April 2012 – p.13/54

Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class C of Σ-formulas:

decide for ϕ[x] ∈ C whether T ∪ {∃x. ϕ} is satisfiable

4th NASA Formal Methods Symposium, April 2012 – p.14/54

Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class C of Σ-formulas:

decide for ϕ[x] ∈ C whether T ∪ {∃x. ϕ} is satisfiable

Fact: the T -satisfiability of quantifier-free formulas is decidable
for many theories T of interest in model checking

4th NASA Formal Methods Symposium, April 2012 – p.14/54

Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class C of Σ-formulas:

decide for ϕ[x] ∈ C whether T ∪ {∃x. ϕ} is satisfiable

Fact: the T -satisfiability of quantifier-free formulas is decidable
for many theories T of interest in model checking

• Equality with“Uninterpreted Function Symbols”

• Linear Arithmetic (Real and Integer)

• Arrays (i.e., updatable maps)

• Finite sets and multisets

• Inductive data types (enumerations, lists, trees, . . .)

• . . .

4th NASA Formal Methods Symposium, April 2012 – p.14/54

Satisfiability Modulo Theories

Let T be a first-order theory of signature Σ

The T -satisfiability problem for a class C of Σ-formulas:

decide for ϕ[x] ∈ C whether T ∪ {∃x. ϕ} is satisfiable

Fact: the T -satisfiability of quantifier-free formulas is decidable
for many theories T of interest in model checking

Thanks to advances in SAT and in decision procedures, this can
be done very efficiently in practice by current SMT solvers

4th NASA Formal Methods Symposium, April 2012 – p.14/54

SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

4th NASA Formal Methods Symposium, April 2012 – p.15/54

SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
automatic, on-line, incremental, restartable, . . .

4th NASA Formal Methods Symposium, April 2012 – p.15/54

SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
automatic, on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

• compute satisfying assignments

• evaluate terms

• identify unsatisfiable cores

• generate interpolants

• construct proof objects

• . . .

4th NASA Formal Methods Symposium, April 2012 – p.15/54

SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
automatic, on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

Are being extended to reason efficiently, if incompletely, with
quantified formulas as well

4th NASA Formal Methods Symposium, April 2012 – p.15/54

SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
automatic, on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

Are being extended to reason efficiently, if incompletely, with
quantified formulas as well

Are now the backend of a variety of FM tools :
model checkers, equivalence checkers, extended static checkers,

type checkers, program verifiers, symbolic simulators, malware

detectors, test case generators, invariant generators, . . .

4th NASA Formal Methods Symposium, April 2012 – p.15/54

SMT Solvers

Differ from traditional theorem provers for having built-in
theories, and using specialized methods to reason about them

Are typically built to be embeddable in larger systems: they are
automatic, on-line, incremental, restartable, . . .

Provide additional functionalities besides satisfiability checking

Are being extended to reason efficiently, if incompletely, with
quantified formulas as well

Are now the backend of a variety of FM tools

Increasingly conform to a standard I/O language: the SMT-LIB
format [BST10]

4th NASA Formal Methods Symposium, April 2012 – p.15/54

Modern SMT Solvers

Such as Alt-Ergo, CVC3, MathSat, OpenSMT, VeriT, Yices,
Z3, . . . ,

• are based on many-sorted first-order logic

• support a combination of several built-in theories

• allow user-defined function and predicate symbols

• follow a stack-based, assert-and-query execution model

• provide a rich API

4th NASA Formal Methods Symposium, April 2012 – p.16/54

Modern SMT Solvers

Such as Alt-Ergo, CVC3, MathSat, OpenSMT, VeriT, Yices,
Z3, . . . ,

• provide a rich API
declare: symbol → type → unit

define: symbol → λ-term → unit

assert: formula → unit

push: unit → unit

pop: unit → unit

check sat: unit → unit

eval: term → value

next model: unit → unit

. . .

4th NASA Formal Methods Symposium, April 2012 – p.16/54

Model Checking: SAT or SMT?

SMT encodings in model checking provide several advantages
over SAT encodings

• more powerful language

(unquantified) first-order formulas instead of Boolean formulas

• satisfiability still efficiently decidable

• similar high level of automation

• more natural and compact encodings

• greater scalability

• not limited to finite state systems

4th NASA Formal Methods Symposium, April 2012 – p.17/54

Model Checking: SAT or SMT?

SMT encodings in model checking provide several advantages
over SAT encodings

SMT-based model checking techniques are

blurring the line between traditional model

checking and deductive verification

4th NASA Formal Methods Symposium, April 2012 – p.17/54

Talk Roadmap
√

Checking safety properties

√
Logic-based model checking

√
Satisfiability Modulo Theories
√

theories
√

solvers

• SMT-based model checking
• main approaches
• k-induction

• basic method
• enhancements

• interpolation

4th NASA Formal Methods Symposium, April 2012 – p.18/54

SMT-based Model Checking

A few approaches:

• Predicate abstraction + finite model checking

• Bounded model checking

• Backward reachability

• Temporal induction (aka k-induction)

• Interpolation-based model checking

4th NASA Formal Methods Symposium, April 2012 – p.19/54

SMT-based Model Checking

A few approaches:

• Predicate abstraction + finite model checking

• Bounded model checking

• Backward reachability

• Temporal induction (aka k-induction)

• Interpolation-based model checking

Will focus more on temporal induction

4th NASA Formal Methods Symposium, April 2012 – p.20/54

Technical Preliminaries

Let’s fix

• L, a logic decided by an SMT solver

(e.g., quantifier-free linear arithmetic and EUF)

• M = (I[x], T [x,x′]), an encoding in L of a system M

• P [x], a state property to be proven invariant for S

4th NASA Formal Methods Symposium, April 2012 – p.21/54

Example: Parametric Resettable Counter

Model

Vars
input pos int n 0
input bool r
int c, n

Initialization
c := 1
n := n 0

Transitions
n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

The transition relation contains

infinitely many instances of the

schema above, one for each n0 > 0

4th NASA Formal Methods Symposium, April 2012 – p.22/54

Example: Parametric Resettable Counter

Model

Vars
input pos int n 0
input bool r
int c, n

Initialization
c := 1
n := n 0

Transitions
n’ := n
c’ := if (r’ or c = n)

then 1
else c + 1

Encoding in L

x := (c, n, r, n0)

I [x] := (c = 1) ∧ (n = n0)

T [x,x′] := (n′ = n)

∧ (r′ ∨ (c = n) → (c′ = 1))

∧ (¬r′ ∧ (c 6= n) → (c′ = c+ 1))

P [x] := c < n+ 1

4th NASA Formal Methods Symposium, April 2012 – p.22/54

Inductive Reasoning

Let S = (I[x], T [x,x′])

To prove P [x] invariant for S it suffices to show that it is
inductive for S, i.e.,

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)

4th NASA Formal Methods Symposium, April 2012 – p.23/54

Inductive Reasoning

Let S = (I[x], T [x,x′])

To prove P [x] invariant for S it suffices to show that it is
inductive for S, i.e.,

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)

An SMT solver can check both entailments above
(ϕ |=L ψ iff ϕ ∧ ¬ψ is unsatisfiable in L)

4th NASA Formal Methods Symposium, April 2012 – p.23/54

Inductive Reasoning

Let S = (I[x], T [x,x′])

To prove P [x] invariant for S it suffices to show that it is
inductive for S, i.e.,

1. I[x] |=L P [x] (base case)

and

2. P [x] ∧ T [x,x′] |=L P [x′] (inductive step)

Problem: Not all invariants are inductive

Example: In the parametric resettable counter, P :=

c ≤ n+ 1 is invariant but (2) above is falsifiable,

e.g., by (c, n, r) = (4, 3, false) and (c, n, r)′ = (5, 3, false)

4th NASA Formal Methods Symposium, April 2012 – p.23/54

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

4th NASA Formal Methods Symposium, April 2012 – p.24/54

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : find a property Q such that Q[x] |=L P [x]
and prove Q inductive

4th NASA Formal Methods Symposium, April 2012 – p.24/54

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : find a property Q such that Q[x] |=L P [x]
and prove Q inductive

Difficult to automate

4th NASA Formal Methods Symposium, April 2012 – p.24/54

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : find a property Q such that Q[x] |=L P [x]
and prove Q inductive

Difficult to automate

• Strengthen T : find another invariant Q[x] and use
Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]

4th NASA Formal Methods Symposium, April 2012 – p.24/54

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : find a property Q such that Q[x] |=L P [x]
and prove Q inductive

Difficult to automate

• Strengthen T : find another invariant Q[x] and use
Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]

Difficult to automate (but lots of recent progress)

4th NASA Formal Methods Symposium, April 2012 – p.24/54

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : find a property Q such that Q[x] |=L P [x]
and prove Q inductive

Difficult to automate

• Strengthen T : find another invariant Q[x] and use
Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]

Difficult to automate (but lots of recent progress)

• Consider longer T -paths: k-induction

4th NASA Formal Methods Symposium, April 2012 – p.24/54

Improving Induction’s Precision

1. I[x] |=L P [x] 2. P [x] ∧ T [x,x′] |=L P [x′]

A few options:

• Strengthen P : find a property Q such that Q[x] |=L P [x]
and prove Q inductive

Difficult to automate

• Strengthen T : find another invariant Q[x] and use
Q[x] ∧ T [x,x′] ∧Q[x′] instead of T [x,x′]

Difficult to automate (but lots of recent progress)

• Consider longer T -paths: k-induction

Easy to automate (but fairly weak in its basic form)

4th NASA Formal Methods Symposium, April 2012 – p.24/54

Basic k-Induction (Naive Algorithm)

Notation: Ii := I [xi], Pi := P [xi], Ti := T [xi−1,xi]

(0) for i = 0 to ∞ do

(0) if not (I0 ∧ T1 ∧ · · · ∧ Ti |=L Pi) then
(0) return fail
(0) if (P0 ∧ · · · ∧ Pi ∧ T1 ∧ · · · ∧ Ti+1 |=L Pi+1) then
(0) return success

P is k-inductive for some k ≥ 0, if the first entailment holds for
all i = 0, . . . , k and the second entailment holds for i = k

Example: In the parametric resettable counter, P := c ≤ n+ 1
is 1-inductive, but not 0-inductive

4th NASA Formal Methods Symposium, April 2012 – p.25/54

Basic k-Induction (Naive Algorithm)

Notation: Ii := I [xi], Pi := P [xi], Ti := T [xi−1,xi]

(0) for i = 0 to ∞ do

(0) if not (I0 ∧ T1 ∧ · · · ∧ Ti |=L Pi) then
(0) return fail
(0) if (P0 ∧ · · · ∧ Pi ∧ T1 ∧ · · · ∧ Ti+1 |=L Pi+1) then
(0) return success

P is k-inductive for some k ≥ 0, if the first entailment holds for
all i = 0, . . . , k and the second entailment holds for i = k

Note:

• inductive = 0-inductive

• k-inductive ⇒ (k + 1)-inductive ⇒ invariant

• some invariants are not k-inductive for any k

4th NASA Formal Methods Symposium, April 2012 – p.26/54

Basic k-Induction with SMT Solvers

Solver maintains current set of asserted formulas

Two solver instances: b, i

(0) assertb(I0)

(0) k := 0

(0) loop

(0) assertb(Tk) // T0 = true by convention

(0) if not entailedb(Pk) then return cexb()

(0) asserti(Pk); asserti(Tk+1)

(0) if entailedi(Pk+1) then return success

(0) k := k + 1

asserts(F): adds formula F to asserted formulas

entaileds(F): checks if F is entailed by asserted formulas

cexs(): returns counterexample after failed entailment

4th NASA Formal Methods Symposium, April 2012 – p.27/54

Actual k-Induction with SMT Solvers

Solver maintains current set of asserted formulas

Two solver instances: b, i

(0) assertb(I0); asserti(¬P1)

(0) k := 0

(0) loop

(0) assertb(Tk) // T0 = true by convention

(0) if not entailedb(Pk) then return cexb()

(0) asserti(P−k); asserti(T−k+1)

(0) if unsati() then return success

(0) k := k + 1

asserts(F): adds formula F to asserted formulas

entaileds(F): checks if F is entailed by asserted formulas

cexs(): returns counterexample after failed entailment

unsats(): succeeds iff asserted formulas are jointly unsatisfiable

4th NASA Formal Methods Symposium, April 2012 – p.28/54

Definition of entaileds

(0) proc entaileds(F)

(0) push()

(0) asserts(¬F)

(0) r := unsat()

(0) pop()

(0) return r

unsats(): succeeds iff asserted formulas are jointly unsatisfiable

4th NASA Formal Methods Symposium, April 2012 – p.29/54

Enhancements to k-Induction

• Abstraction and refinement

• Path compression

• Termination checks

• Property strengthening

• Invariant generation

• Multiple property checking

4th NASA Formal Methods Symposium, April 2012 – p.30/54

Path Compression (simplified)

Let E[x,y] be a formula s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

4th NASA Formal Methods Symposium, April 2012 – p.31/54

Path Compression (simplified)

Let E[x,y] be a formula s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can strengthen the premise of the inductive step as follows

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ Ck |=L Pk+1

where Ck :=
∧

0≤i<j≤k ¬E[xi,xj]

4th NASA Formal Methods Symposium, April 2012 – p.31/54

Path Compression (simplified)

Let E[x,y] be a formula s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can strengthen the premise of the inductive step as follows

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ Ck |=L Pk+1

where Ck :=
∧

0≤i<j≤k ¬E[xi,xj]

Rationale: Consider a path that breaks original (2)

π := σ0, . . . , σi, σi+1, . . . , σj , σj+1, . . . , σk+1

with E[σi, σj] and i < j. If π is on an actual execution of M,
so is the shorter path σ0, . . . , σi, σj+1, . . . , σk+1

4th NASA Formal Methods Symposium, April 2012 – p.31/54

Path Compression (simplified)

Let E[x,y] be a formula s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can further strengthen the premise of the inductive step with

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ Ck ∧Nk |=L Pk+1

where Nk :=
∧

1≤i≤k+1
¬I[xi]

4th NASA Formal Methods Symposium, April 2012 – p.32/54

Path Compression (simplified)

Let E[x,y] be a formula s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can further strengthen the premise of the inductive step with

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ Ck ∧Nk |=L Pk+1

where Nk :=
∧

1≤i≤k+1
¬I[xi]

Rationale: if
σ0, . . . , σi, . . . , σk+1 breaks original (2) and I[σi], then
σi, . . . , σk+1 breaks the base case in the first place

4th NASA Formal Methods Symposium, April 2012 – p.32/54

Path Compression (simplified)

Let E[x,y] be a formula s.t. E[x,y] |=L ∀z (T [x, z] ⇔ T [y, z])

(Ex: E[x,y] := x = y)

Can further strengthen the premise of the inductive step with

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ Ck ∧Nk |=L Pk+1

where Nk :=
∧

1≤i≤k+1
¬I[xi]

Better E’s than x = y can be generated by an analysis of M

More sophisticated notions of compressions have been
proposed [dMRS03]

4th NASA Formal Methods Symposium, April 2012 – p.32/54

Termination check

Ck :=
∧

0≤i<j≤k ¬E[xi,xj]

(0) for k = 0 to ∞ do

(0) if not (I0 ∧ T1 ∧ · · · ∧ Tk |=L Pk) then
(0) return fail
(0) if (P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1) then
(0) return success
(0) if (I0 ∧ T1 ∧ · · · ∧ Tk+1 |=L ¬Ck+1) then
(0) return success

4th NASA Formal Methods Symposium, April 2012 – p.33/54

Termination check

Ck :=
∧

0≤i<j≤k ¬E[xi,xj]

(0) for k = 0 to ∞ do

(0) if not (I0 ∧ T1 ∧ · · · ∧ Tk |=L Pk) then
(0) return fail
(0) if (P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1) then
(0) return success
(0) if (I0 ∧ T1 ∧ · · · ∧ Tk+1 |=L ¬Ck+1) then
(0) return success

Rationale: If the last test succeeds, every execution of length
k + 1 is compressible to a shorter one.
Hence, the whole reachable state space has been covered
without finding counterexamples for P

4th NASA Formal Methods Symposium, April 2012 – p.34/54

Termination check

Ck :=
∧

0≤i<j≤k ¬E[xi,xj]

(0) for k = 0 to ∞ do

(0) if not (I0 ∧ T1 ∧ · · · ∧ Tk |=L Pk) then
(0) return fail
(0) if (P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1) then
(0) return success
(0) if (I0 ∧ T1 ∧ · · · ∧ Tk+1 |=L ¬Ck+1) then
(0) return success

Note: The termination check may slow down the process but
increases precision in some cases
It even makes k-induction complete whenever the quotient S/E
is finite (e.g., timed automata)

4th NASA Formal Methods Symposium, April 2012 – p.35/54

Property Strengthening

Suppose in the k-induction loop the SMT solver finds a
counterexample σ0, . . . , σk+1 for

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

4th NASA Formal Methods Symposium, April 2012 – p.36/54

Property Strengthening

Suppose in the k-induction loop the SMT solver finds a
counterexample σ0, . . . , σk+1 for

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

Then this property is satisfied by σ0:

F [x0] := ∃x1, . . . ,xk+1(P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ ¬Pk+1)

4th NASA Formal Methods Symposium, April 2012 – p.36/54

Property Strengthening

Suppose in the k-induction loop the SMT solver finds a
counterexample σ0, . . . , σk+1 for

2. P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

Then this property is satisfied by σ0:

F [x0] := ∃x1, . . . ,xk+1(P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 ∧ ¬Pk+1)

(Naive) Algorithm:

1. find a B[x] in L satisfied by σ0 and s.t. B[x] |=L F [x]

2. restart the process with P [x] ∧ ¬B[x] in place of P [x]

4th NASA Formal Methods Symposium, April 2012 – p.36/54

Correctness of Property Strengthening

F [x0] := ∃x1, . . . ,xk+1 (P0∧ · · · ∧Pk ∧T1∧ · · · ∧Tk+1∧¬Pk+1)

When F is satisfied by some σ0, we

1. find a B[x] in L satisfied by σ0 and s.t. B[x] |=L F [x]

2. replace P [x] with Q[x] := P [x] ∧ ¬B[x]

3. “restart” the k-induction process

• If all states satisfying B are unreachable, we can remove
them from consideration in the inductive step

• Otherwise, P is not invariant and the base case is
guaranteed to fail with Q

4th NASA Formal Methods Symposium, April 2012 – p.37/54

Viability of Property Strengthening

F [x0] := ∃x1, . . . ,xk+1 (P0∧ · · · ∧Pk ∧T1∧ · · · ∧Tk+1∧¬Pk+1)

When F is satisfied by some σ0, we

1. find a B[x] in L satisfied by σ0 and s.t. B[x] |=L F [x]

2. replace P [x] with Q[x] := P [x] ∧ ¬B[x]

3. “restart” the k-induction process

• Normally, computing a B equivalent to F requires QE,
which may be impossible or very expensive

• Under-approximating F might be cheaper but less effective
in pruning unreachable states.

4th NASA Formal Methods Symposium, April 2012 – p.38/54

(Undirected) Invariant Generation

1. Generate invariants for M independently from P , either
before or in parallel with k-induction

2. For each invariant J [x], add J0 ∧ · · · ∧ Jk+1 to induction
hypothesis in induction step

P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

4th NASA Formal Methods Symposium, April 2012 – p.39/54

(Undirected) Invariant Generation

1. Generate invariants for M independently from P , either
before or in parallel with k-induction

2. For each invariant J [x], add J0 ∧ · · · ∧ Jk+1 to induction
hypothesis in induction step

P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

Correctness: states not satisfying J are definitely unreachable
and so can be pruned

4th NASA Formal Methods Symposium, April 2012 – p.39/54

(Undirected) Invariant Generation

1. Generate invariants for M independently from P , either
before or in parallel with k-induction

2. For each invariant J [x], add J0 ∧ · · · ∧ Jk+1 to induction
hypothesis in induction step

P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

Correctness: states not satisfying J are definitely unreachable
and so can be pruned

Viability: can use any property-independent method for
invariant generation (template-based [KGT11], abstract
interpretation-based, . . .)

4th NASA Formal Methods Symposium, April 2012 – p.39/54

(Undirected) Invariant Generation

1. Generate invariants for M independently from P , either
before or in parallel with k-induction

2. For each invariant J [x], add J0 ∧ · · · ∧ Jk+1 to induction
hypothesis in induction step

P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

Effectiveness: when P is invariant, can substantially improve

• speed, by making P k-inductive for a smaller k, and

• precision, by turning P from k-inductive for no k to
k-inductive for some k

4th NASA Formal Methods Symposium, April 2012 – p.40/54

(Undirected) Invariant Generation

1. Generate invariants for M independently from P , either
before or in parallel with k-induction

2. For each invariant J [x], add J0 ∧ · · · ∧ Jk+1 to induction
hypothesis in induction step

P0 ∧ · · · ∧ Pk ∧ T1 ∧ · · · ∧ Tk+1 |=L Pk+1

Shortcomings:

• Computed invariants may not prune the right unreachable
states

• Adding too many invariants may swamp the SMT solver

4th NASA Formal Methods Symposium, April 2012 – p.40/54

Approximating R with Interpolation

Recall: If R[x] is the strongest inductive invariant for M in L,

M is safe wrt some B[x] iff R[x] ∧B[x] |=L ⊥

Problem: Such invariant may be very expensive or impossible
to compute, or not even representable in L

4th NASA Formal Methods Symposium, April 2012 – p.41/54

Approximating R with Interpolation

Recall: If R[x] is the strongest inductive invariant for M in L,

M is safe wrt some B[x] iff R[x] ∧B[x] |=L ⊥

Problem: Such invariant may be very expensive or impossible
to compute, or not even representable in L

Observation: It suffices to compute an R̂[x] such that

• R[x] |=L R̂[x] (R̂ over-approximates R)

• R̂[x] ∧ B[x] |=L ⊥ (R̂ is disjoint with B)

4th NASA Formal Methods Symposium, April 2012 – p.41/54

Approximating R with Interpolation

Recall: If R[x] is the strongest inductive invariant for M in L,

M is safe wrt some B[x] iff R[x] ∧B[x] |=L ⊥

Problem: Such invariant may be very expensive or impossible
to compute, or not even representable in L

Observation: It suffices to compute an R̂[x] such that

• R[x] |=L R̂[x] (R̂ over-approximates R)

• R̂[x] ∧ B[x] |=L ⊥ (R̂ is disjoint with B)

A solution: Use theory interpolants to compute R̂[x]

4th NASA Formal Methods Symposium, April 2012 – p.41/54

Logical Interpolation (simplified)

A logic L has the interpolation property if

for all A[y,x] and B[x, z] in L with A[y,x] ∧B[x, z] |=L ⊥

there is a P [x] in L such that

A[y,x] |=L P [x] and P [x] ∧B[x, z] |=L ⊥

P is an interpolant of A and B

4th NASA Formal Methods Symposium, April 2012 – p.42/54

Logical Interpolation (simplified)

A logic L has the interpolation property if

for all A[y,x] and B[x, z] in L with A[y,x] ∧B[x, z] |=L ⊥

there is a P [x] in L such that

A[y,x] |=L P [x] and P [x] ∧B[x, z] |=L ⊥

P is an interpolant of A and B

Intuitively, P

• is an abstraction of A from the viewpoint of B

• summarizes and explains in terms of the shared variables x
why A is inconsistent with B

4th NASA Formal Methods Symposium, April 2012 – p.42/54

Logical Interpolation (simplified)

A logic L has the interpolation property if

for all A[y,x] and B[x, z] in L with A[y,x] ∧B[x, z] |=L ⊥

there is a P [x] in L such that

A[y,x] |=L P [x] and P [x] ∧B[x, z] |=L ⊥

P is an interpolant of A and B

Note: If L has quantifier elimination, the strongest interpolant
(wrt |=L) is one equivalent to ∃y.A[y,x]

4th NASA Formal Methods Symposium, April 2012 – p.42/54

Logical Interpolation (simplified)

A logic L has the interpolation property if

for all A[y,x] and B[x, z] in L with A[y,x] ∧B[x, z] |=L ⊥

there is a P [x] in L such that

A[y,x] |=L P [x] and P [x] ∧B[x, z] |=L ⊥

P is an interpolant of A and B

Note: If L has quantifier elimination, the strongest interpolant
(wrt |=L) is one equivalent to ∃y.A[y,x]

Interpolation is an over-approximation of quantifier elimination

4th NASA Formal Methods Symposium, April 2012 – p.42/54

Logics with Interpolation

The quantifier-free fragment of several theories used in SMT
has the interpolation properties and computable interpolants:

• EUF [McM05b, FGG+09]

• linear integer arithmetic with divn [JCG09]

• real arithmetic [McM05b]

• arrays with diff [BGR11]

• combinations of any of the above [YM05, GKT09]

• . . .

4th NASA Formal Methods Symposium, April 2012 – p.43/54

Interpolation-based Model Checking

Let (I[x], T [x,x′]) be an encoding in L of a system M

Consider the bounded reachability formulas (Ri[x])i where

• R0[x] := I[x]

• Ri+1[x] := Ri[x] ∨ ∃y(Ri[y] ∧ T [y,x])

4th NASA Formal Methods Symposium, April 2012 – p.44/54

Interpolation-based Model Checking

Let (I[x], T [x,x′]) be an encoding in L of a system M

Consider the bounded reachability formulas (Ri[x])i where

• R0[x] := I[x]

• Ri+1[x] := Ri[x] ∨ ∃y(Ri[y] ∧ T [y,x])

We prove safety wrt a state property B by using interpolation

[McM05a] to compute a sequence (R̂i)i≥0 such that

• each R̂i overapproximates Ri and is disjoint with B

• the sequence is increasing wrt |=L

• the sequence has a fixpoint R̂ (modulo equivalence in L)

4th NASA Formal Methods Symposium, April 2012 – p.44/54

Constructing (R̂i)i≥0

Fix some k > 0, R̂0 := I[x]

Base Case.

A := R̂0[x0] ∧ T [x0,x1]

B := T [x1,x2] ∧ · · · ∧ T [xk−1,xk] ∧ (B[x1] ∨ · · · ∨B[xk])

if A ∧ B is satisfiable in L then

fail (M is not safe wrt B)

else

compute an interpolant P [x1] of A and B

R̂1 := R̂0[x] ∨ P [x]

4th NASA Formal Methods Symposium, April 2012 – p.45/54

Constructing (R̂i)i≥0

Step Case.

for i = 1 to ∞

A := R̂i[x0] ∧ T [x0,x1]

B := T [x1,x2] ∧ · · · ∧ T [xk−1,xk] ∧ (B[x1] ∨ · · · ∨B[xk])

if A ∧ B is satisfiable in L then

restart the whole process with a larger k

else

compute an interpolant P [x1] of A and B

R̂i+1 := R̂i[x] ∨ P [x]

if R̂i+1 |=L R̂i[x] then succeed (fixpoint found)

4th NASA Formal Methods Symposium, April 2012 – p.46/54

Notes on the Interpolation Method

• It needs an interpolating SMT solver

• It is not incremental: a counter-example in the step case
requires a real restart

• It can be made terminating when M has finite
bisimulation quotient

• In the terminating cases, it converges more quickly than
basic k-induction
(k is bounded by M’s radius, not just the reoccurence radius as in

k-induction)

4th NASA Formal Methods Symposium, April 2012 – p.47/54

Conclusions
• SMT-based Model Checking is the new frontier in safety
checking thanks to powerful and versatile SMT solvers

• Several SAT-based methods can be lifted to the SMT case

• SMT encodings of transitions systems are basically 1-to-1

• Reasoning is at the same level of abstraction as in the
original system

• Scalability and scope are higher than approaches based on
propositional logic

• Several approaches and enhancements are being tried,
capitalizing on different features of SMT solvers

• Lots of anecdotal evidence of successful applications

4th NASA Formal Methods Symposium, April 2012 – p.48/54

Future Directions

• Quantifiers are often needed to encode
• parametrized model checking problems

(coming, e.g., from multi-process systems)

• problems with arrays

• New SMT techniques are needed to generate/work with
quantified transition relations, interpolants, invariants, . . .

• Synergistic combinations with traditional abstract
interpretation tools seem possible

• We are starting to see some promising work in these
directions, but much is left to do

4th NASA Formal Methods Symposium, April 2012 – p.49/54

References
[AMP06] A. Armando, J. Mantovani, and L. Platania. Bounded model checking of

software using SMT solvers instead of SAT solvers. In Proceedings of the 13th

International SPIN Workshop on Model Checking of Software (SPIN’06), volume

3925 of LNCS, pages 146–162. Springer, 2006

[ACJT96] P. A. Abdulla, K. Cerans, B. Jonsson, and Yih-Kuen Tsay. General

decidability theorems for infinite-state systems. In Proceedings of the 11th Annual

IEEE Symposium on Logic in Computer Science, LICS ’96, pages 313–321. IEEE

Computer Society, 1996

[Bie09] A. Biere. Bounded model checking. In Armin Biere, Marijn J. H. Heule, Hans

van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, volume 185,

chapter 14, pages 455–481. IOS Press, February 2009

[BM07] A. Bradley and Z. Manna. Checking safety by inductive generalization of

counterexamples to induction. In Proceedings of the 7th International Conference

on Formal Methods in Computer-Aided Design, pages 173–180, 2007

[Bra10] A. Bradley. Sat-based model checking without unrolling. In In Proc. Verification,

Model-Checking, and Abstract-Interpretation (VMCAI), volume 6538 of Lecture

Notes in Computer Science, pages 70–87. Springer-Verlag, 2010

4th NASA Formal Methods Symposium, April 2012 – p.50/54

References
[BSST09] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability modulo

theories. In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh,

editors, Handbook of Satisfiability, volume 185, chapter 26, pages 825–885. IOS

Press, February 2009

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:

Version 2.0. In A. Gupta and D. Kroening, editors, Proceedings of the 8th

International Workshop on Satisfiability Modulo Theories (Edinburgh, UK), 2010

[BGR11] Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise. Rewriting-based

quantifier-free interpolation for a theory of arrays. In Manfred Schmidt-Schauß,

editor, Proc. of the 22nd Int. Conf. on Rewriting Techniques and Applications,

volume 10 of LIPIcs, pages 171–186. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2011

[CBRZ01] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using

satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001

[dMRS03] L. de Moura, H. Rueß, and M. Sorea. Bounded model checking and

induction: From refutation to verification. In Proceedings of the 15th International

Conference on Computer-Aided Verification (CAV 2003), volume 2725 of Lecture

Notes in Computer Science. Springer, 2003

4th NASA Formal Methods Symposium, April 2012 – p.51/54

References
[EMB11] Niklas Een, Alan Mishchenko, and Robert Brayton. Efficient implementation

of property directed reachability. In Proceedings of the International Conference on

Formal Methods in Computer-Aided Design, pages 125–134, 2011

[FGG+09] Alexander Fuchs, Amit Goel, Jim Grundy, Sava Krstić, and Cesare Tinelli.

Ground interpolation for the theory of equality. In S. Kowalewski and A. Philippou,

editors, Proceedings of the 15th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems (York, UK), volume 5505 of Lecture

Notes in Computer Science, pages 413–427. Springer, 2009

[GR10] S. Ghilardi and S. Ranise. Backward reachability of array-based systems by smt

solving: Termination and invariant synthesis. Logical Methods in Computer Science,

6(4), 2010

[GKT09] Amit Goel, Sava Krstić, and Cesare Tinelli. Ground interpolation for combined

theories. In R. Schmidt, editor, Proceedings of the 22nd International Conference on

Automated Deduction (Montreal, Canada), volume 5663 of Lecture Notes in

Artificial Intelligence, pages 183–198. Springer, 2009

4th NASA Formal Methods Symposium, April 2012 – p.52/54

References
[HT08] G. Hagen and C. Tinelli. Scaling up the formal verification of Lustre programs

with SMT-based techniques. In Proceedings of the 8th International Conference on

Formal Methods in Computer-Aided Design (FMCAV’08), Portland, Oregon, pages

109–117. IEEE, 2008

[JCG09] Himanshu Jain, Edmund M. Clarke, and Orna Grumberg. Efficient craig

interpolation for linear diophantine (dis)equations and linear modular equations.

Formal Methods in System Design, 35:6–39, August 2009

[KGT11] Temesghen Kahsai, Yeting Ge, and Cesare Tinelli. Instantiation-based invariant

discovery. In M. Bobaru, K. Havelundand G. Holzmann, and R. Joshi, editors,

Proceedings of the 3rd NASA Formal Methods Symposium (Pasadena, CA, USA),

volume 6617 of Lecture Notes in Computer Science, pages 192–207. Springer, 2011

[McM05b] Kenneth L. McMillan. An interpolating theorem prover. Theoretical

Computer Science, 345(1):101–121, 2005

[McM05a] K. McMillan. Applications of Craig interpolants in model checking. In

Proceedings of the 11th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (Edinburgh, UK), volume 3440 of Lecture

Notes in Computer Science, pages 1–12. Springer, 2005

4th NASA Formal Methods Symposium, April 2012 – p.53/54

References
[McM03] K. McMillan. Interpolation and SAT-based model checking. In Proceedings of

the 15th International Conference on Computer Aided Verification, (Boston,

Massachusetts), volume 2725 of Lecture Notes in Computer Science, pages 1–13.

Springer, 2003

[Seb07] R. Sebastiani. Lazy satisability modulo theories. Journal on Satisfiability,

Boolean Modeling and Computation, 3(3-4):141–224, 2007

[SSS00] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using

induction and a SAT-solver. In Proceedings of the Third International Conference

on Formal Methods in Computer-Aided Design, pages 108–125, London, UK, 2000.

Springer-Verlag

[YM05] Greta Yorsh and Madanlal Musuvathi. A combination method for generating

interpolants. In Robert Nieuwenhuis, editor, Proceedings of the 20th International

Conference on Automated Deduction, volume 3632 of Lecture Notes in Computer

Science, pages 353–368. Springer, 2005

4th NASA Formal Methods Symposium, April 2012 – p.54/54

	
	Modeling Computational Systems
	Model Checking
	�romSlide *{3}{emph {Safety} sout {Model} Checking} untilSlide *{2}{Model Checking}
	Talk Roadmap
	Basic Terminology
	Safety and Invariance
	Checking Safety
	Logic-based Symbolic Model Checking
	Logical encodings of transitions systems
	Strongest Inductive Invariant
	Main Logic-based Approaches
	Model Checking Modulo Theories
	Satisfiability Modulo Theories
	SMT Solvers
	Modern SMT Solvers
	Model Checking: SAT or SMT?
	Talk Roadmap
	SMT-based Model Checking
	SMT-based Model Checking
	Technical Preliminaries
	Example: Parametric Resettable Counter
	Inductive Reasoning
	Improving Induction's Precision
	Basic k-Induction (Naive Algorithm)
	Basic k-Induction (Naive Algorithm)
	Basic k-Induction with SMT Solvers
	emph {Actual} k-Induction with SMT Solvers
	Definition of $sop {entailed}{mathit s}$
	Enhancements to k-Induction
	Path Compression (simplified)
	Path Compression (simplified)
	Termination check
	Termination check
	Termination check
	Property Strengthening
	Correctness of Property Strengthening
	Viability of Property Strengthening
	(Undirected)
Invariant Generation
	(Undirected)
Invariant Generation
	Approximating ms {R} with Interpolation
	Logical Interpolation (simplified)
	Logics with Interpolation
	Interpolation-based Model Checking
	Constructing ms {(widehat R^i)_{igeq
0}}
	Constructing ms {(widehat R^i)_{igeq
0}}
	Notes on the Interpolation Method
	Conclusions
	Future Directions
	References
	References
	References
	References
	References

